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Hadoop challenges

• No iterative support from language
• Must do manually

SCALA

• scalable Language

• Object - oriented , compiled into Java bytecode (runs on JVM)

hello
. Scala

compiled
> Scala. class

• Can reference Java libraries

• Blends 00 and FP (functional programming)

• strongly statically typed

what's wrong with Java?

• Verbose Cboilerplate)
• Not designed to be very concurrent Cbefore Java 5+7

What's right with Java?

• Popular
• 00

•

strongly typed
• Library of classes large
• JVM platform independent



class Test {

    public static void main(String[] args) {

        int x = 7;

        final String y = "hi";

    }

}

class Example {

    int square(int x) {

        return x*x;

    }

    void announce(String text) {

        System.out.println(text);

    }

}

// Declaring variables

var x: Int = 7  // explicit type

var x = 7       // type inferred

val y = "hi"    // read-only (constant)

// Functions

def square(x: Int): Int = x*x

def square(x: Int): Int = {

    x*x

}

def announce(text: String) = {

    println(text)

}

Java vs Scala

• Almost completely interoperable

SCALA JAVA

• no return keyword
• features similar to JS Ee python



class Person {

    private String firstName;

    private String lastName;

    private int age;

    public Person(String firstName, String lastName, int age) {

        this.firstName = firstName;

        this.lastName = lastName;

        this.age = age;

    }

    

    public void setFirstName(String firstName) { this.firstName = firstName; } 

    public String getFirstName() { return this.firstName; }

    

    public void setLastName(String lastName) { this.lastName = lastName; } 

    public String getLastName() { return this.lastName; }

   

    public void setAge(int age) { this.age = age; }

    public int getAge() { return this.age; } 

}

http://cleancoder.com/

Major Differences

1. Minimal verbosity

2. Referential Transparency
• type inferencing in Scala
• compiler checks type of sub expressions , atomic values

3. Concurrency
• Actor model

• Akka open-source framework for Actor- based concurrency

4. Functional Programming
• Higher order functions that can return another function
^ Nested functions

1. Minimal Verbosity
• Getters Ee setters Cnote : ppt link does not work ; objectmentor has

been moved to )

• Java



class Person(var firstName: String, var lastName: String, var age: Int)

https://docs.scala-lang.org/tour/type-inference.html

val collegeName = "PES University"      // const reference

def squareOf(x: Int) : x * x            // def method that cannot be reassigned

• Scala (automatic)

2. Type Inferring
• Java is statically typed
-

type errors caught by compiler

°

Ruby 4 Python do not require declared types
- harder to debug
- not type safe

• Scala is statically typed but it uses type inferenceing
-

type errors caught by compiler
-

consistency
. Java: every value is a type , except primitive types (int , bool)
for efficiency reasons

• Scala: every value is an object; compiler turns into primitives for

efficiency

• Java has operators 6 methods with different syntaxes

• In Scala
, operators are methods and either syntax can be used



3. Concurrency
•

concurrency vs parallelism
-

concurrency creates illusion of parallelism; can execute multiple
threads on the same core

-

concurrency achieved through context switching
- Parallelism requires multiple cores to run multiple computations

simultaneously

•

Fine-grained concurrency : frequent interactions between threads

working together
- difficult to implement right
- requires locks on shared resources

• coarse-grained concurrency: infrequent interactions between largely
independent sequential processes
- easier to get right
-

map - reduce
- not at cycle level

• Java 546 reasonable support for Fine-grained concurrency

• Scala has access to the Java API

• Scala also has Actors for coarse-grained parallelism
- Sending messages using send ! Abstraction

message

map > Reduce



4. Functional Programming
• Problem with concurrency : acquire locks

• If prog language does not allow modification of variables
,
locks not

required

• Functional programming languages use only immutable data leg : ML ,
OCaml

,
Haskell

,
lisp)

• Difficult to learn

• Scala is an impure functional language can program functionally
but not forced upon you

• Features

(a) Immutable
- functional operations create new structures and do not modify
existing structures

(b) Program implicitly captures data flow

(c) Order of operations unimportant

(d) Functions

- are objects
-

arguments
-

can be returned
-

can operate on collections



• Quicksort in Scala Java style

pivot
in the middle

explicitly
iterate

determine

when to swap

swap

^
É

pivot

°

÷



Does this sort array in ascending order or descending order?

- Quicksort in Scala - functional programming

pick a pivot

sort values

smaller than

pivot
sort values concatenate result

greater than
pivot

< <

> new array
<

C C

→ → a

<

< >

> >

7 7

Q :

} > ascending



Consider the program with array
xs = 3,1,2,0,7,6,4,5

Write a program to sort in the reverse order (if ascending, sort 
descending)
How can we parallelize this?

Q :

def sort (Xs : Array [Int]) : Array[Int] = {

if Cxs . length < = 1) ✗s

else {

sortCxs filter (pivot <D , }
can parallel ise

✗s filter (pivot = =) , filtering tasks

sortcxs filter (pivot >7)
}

}

Functional Programming 4 Functions
list remains unchanged



Functional Programming 4 Big Data

• Independent parallel operations
-

mapc) in FP

• Parallel operations to be consolidated

- aggregation C) of FP

SPARK

• Most cluster prog models : DAG C Directed Acyclic Graph)

• Advantages of Hadoop
1- Input HDFS → output HDFS

2. User specified no . of MIR
3. Handle failures

• Issues of Hadoop (think: page rank)
1. Iterative

2
. Every iteration requires write to disk

3. 0/P of reducer → input of mapper Cincy out of disk]

• Look : Ha/Oop



In- Memory computation

• Word - count program in Scala

> compute word count

each operation creates

data value that can be

kept in memory ee reused

Iterative Processing in memory
• Think: page rank



• Caching

Problems

1- Too large for RAM ; how to deal with overflows

2. How to split across DRAM of entire cluster

3. How to handle failures (power failures)

DISTRIBUTED DATASET

• Flume : import logs into HDFS (error logs, activity logs etc)



Example Log Processing

• Load from log into memory
• Search for patterns

Distribute the computation

' lines : virtual DS with 3 parts (distributed)
• filter performed separately on each partition (Parallelly)

cache

Terrors
1--1-31=1
lines 1

filter

cache

c-
☐→☐

lines Terrors

warmer ,
fitter MAP

, ^ filter

lines errors messages ☐
→a

filter map lines terrors
worker2 → >

filter

lines errors messages

filter map
worker } 2

lines errors messages



Handling Fault Tolerance

• What if n
,
crashes after filter

No N
, no N , No N

,



Resilient Distributed Dataset CRDD)

° Add lineage information to the concept of a distributed dataset

• Ability to recreate in case of failure
-

Keep track of operations performed on RDD and to create RDD
• Types of operations support

RDD Operations
1. Transformations

2. Actions

Transformation

• create new dataset from existing dataset
'

Eg: mapl) in Scala



Q : I = { 47,39 , 22 , 25,36 }

t.fi/terCx--7CxYo2)---- 1)

47%2 -_=1 → true

39%2 = =/ → true

22%2 '

- =/ → false

25%2 =
-

- I → true

36%2=-4 → false

filtered :{ 47>39,25}

D: no { 4339,22} n
,
{25,36}

t.fi/terCx--7CxYo2)---- 1)

no 147,393 n
,
125}



Flatmap

[
"
line one

"

,

"
line two

" ]

split each line

V

( (
"
line

"

,

"
one

"]
,
[
"
line"

,

" two
"]]

combine

✓

(
"
line

"

,

"
one

"

,

"
line"

,

" two
"]

Transformations on 2 RDDS

check if

repeat is

✓
mistake

-



Actions

° Operations that return a value

-

Eg: reduce1)

at /
master

at master/



RDD Operations on key-value pairs

• Spark : pair RDDS

t
needs partition
function



count By key : distributed action

returns hashmap of Ck
>
Int) pairs with count of

each uey

WORD COUNT IN SPARK

Spark Architecture

•

Eg: log mining

←
cache : in order to replicate if fails ,
reduce processing time , retain for further use

(prevent garbage collect)

} RDDgraph



Master
filter logs

/ YARN

logs
submit

for lineage info/
fault tolerance

C

HDFS

workers → node



Spark Working Details

< Master > c slave s

rdd , rddz

join

group by

f. filter

Lazy Execution

• Spark driver : no execution when encounters a transformation
• Transformations only noted for lineage
• Executes only when action encountered



Q : why lazy execution?

•

Clubbing transformations reduce net traffic

• Bring data into memory once

• Optimisation can be performed

spark log mining Example

→ base RDD

parallel {
→ transformed

RDP

→ action

7

tasks

J

v



RDDS- Details

- Partitioned
, locality aware , distributed collection

• RDDS are immutable Cno partial state with multiple threads)

• RDDS are DS that either
-

point to data source CHDFS)
-

apply a transformation to parent RDDS to generate new elements

• Computations on RDDS
- lazily evaluated lineage DAGS composed of chained RDDS

lines . filter . split C' It
'
) . countBykeyc )

7
r

<
,

done slave
,

slave
,

done

motif motif

lines lines

I filter I filter

f. split f. split

f. country key f country key

can be faster can be slower



Why RDD Abstraction ?

• Support operations other than MR

• Support in -memory computation
• Arbitrary composition of such operators
• Simplify scheduling (order of generation of RDDS)

Representing RDDS

• Splits - set of partitions Cmachines)

- like Hadoop, each RDD associated with input partition

i :
Po 1 P

, i Pz
'

;
Mo

! M
, i Mz

f filter filter I :| dependencyv1 t
I 1

I
1

fpo I fp , i fpz

i :

MR :

• List of dependencies on parent RDDS
• Function to compute partitions given parents
• Optional preferred locations

•

Optional partitioning info (partitioner for shuffle)



RDDS Interface

Hadoop RDD (map)

Partitions - one per block

Dependencies - none
compute Cpartition) - read corresponding block

Preferred locations - HDFS block location

partitioner - none

Filtered RDD

Partitions - same as parent
Dependencies - 1-1 with parent
compute - compute parent and filter it
Preferred locations - ask parent (none)
partitioner - none



Join RDD

RDD , RDD
2

joined RDD

Partitions - one per reduce task

Dependencies - many to one

compute - read and join shuffled data

Preferred locations - none

Partitioner - HashPartitioner

ReduceBykey RDD

• Transformation

Partitions - one per key
Dependencies - many to many con all parent nodes)

compute - reduce data and send

Preferred locations - subset of parent partitions involved
partitioner - hash

Xi Y Xi V4

✗z V2 "
4 V5

✗
3 V3



lines = textfile
links = lines.map(lambda urls: urls.split()).groupByKey().cache()

ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0))

for iteration in range(MAXITER)):
contribs = links.join(ranks).flatMap(lambda url_neighbors_rank: 

computeContribs(url_neighbors_rank))

ranks = contribs.reduceByKey(add).mapValues (lambda rank: rank * 

0.85 + 0.15)

def computeContribs (url_neighbors_rank): 

"""Calculates URL contributions to the rank of other URLs.
"""

num_neighbors = len (url_neighbors_rank) 2 
rank = url_neighbors_rank [len (url_neighbors_rank) 1] 

for i in range (1, num_neighbors):
yield (url_neighbors_rank[i], rank / num_neighbors)

Spark Scheduling

Page Rank in Spark

Urls→ link

( source) cdest)

0
rank/neighbours

11"
O o o

°



lines = textfile("urls.txt")
links = lines.map (lambda urls: urls.split()).groupByKey().cache()

ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0))

for iteration in range(MAXITER)):
contribs = links.join(ranks).flatMap(lambda url_neighbors_rank: 
computeContribs(url_neighbors_rank))

ranks = contribs.reduceByKey(add).mapValues(lambda rank: 
rank*0.85 + 0.15)

DAG Representation

Note : ranks are links spread across multiple nodes
.
How does

spark ensure join works properly?



Links join Ranks

• wide dependency

links ,
- - - - -

,

n conn

Links 1 a

1Mo t
b

un neigh , n machines
1

I
1 c s a-b

f
n conn

,

Mi '
d '

1 7 My
1-= = = -1

ranks Ranks 1 I
} c - d

Mz
1
A

3

Url rank
,
c

'
n conn 7

I M5
I

1 b l

m
} ,

n conn Reduce

1 d

l
- - -

-

l

map

•

Requires full shuffle over network

• Each worker depends on all parents

- Make more efficient?
- copartition

• If Linus 6 Ranks partitioned with same function



• Narrow dependency

links ,
- - - - -

,

Links 1 a

1Mo 1

burlneigh , n machines
I

1
I c a-b

1
>

Mi '
d

,

s my
1-= = = =

'

ranks Ranks 1 I
c-d

Mz
1
A

1 §url rank
,
b

l M5
l

l

m
,

I ° Reduce

1 d l

l
- - -

-

l

map

wide 4 Narrow Partitioning

1. Narrow

- each partition of parent RDD used by at most one partition
of child RDD

- No shuffle ; pipeline operations

2. Wide

- multiple child partitions may depend
- shuffle

copartition : both join inputs partitioned with same function



Lineage Eg Optimising Placement



Narrow Wide

Scheduling
• subgraphs separated by wide partition
• within stages : local

earthman

wide

narrow

wide

\¥
[
stage boundary :
wide dependency



- So and S
,
can be scheduled in parallel

• S
, only after so Eg S

, Complete

TASK ASSIGNMENT

• Scheduler assigns tasks to machines based on data locality
using delay scheduling

• If partition to be processed available in memory on a node
,

sent to that node

• Otherwise
,
task processes partition for which the containing

RDD provides preferred location and sends to those

Dataframer
• RDDS opaque to spark → cannot parse

• Spark must understand format



from pyspark.sql import SQLContext 

sqlContext = SQLContext(sc)

# DataFrames can be created from existing RDDs,
# HIVE tables or other data sources.
# Here, from JSON file
df = sqlContext.jsonFile("pes/students.json")

# Display the contents
df.show()

## USN  name  marks
## 045  Vkoli   11
## 010  Stendul  43
## 195  Abachpan28

# Alternatively, from an existing RDD by naming 
# the columns
Df = rdd.toDF("USN", "name")

• Distributed collection of data into named columns Cabstraction

over RDDS)

Using DataFrame



Consider a case where you have data in a CSV file that consists 
of <pan_number, date, tax_paid> and you wanted to find out the 
total tax paid by each individual pan holder
How will you do it in Spark?
How will you do it with Spark Data frames?

df = rdd.toDF("pan_number", "date", "tax paid")

df.select("pan_number", "tax_paid").groupBy("pan_number").sum()

DryadLINQ, FlumeJava
- Similar "distributed collection" API but cannot reuse 
datasets efficiently across queries 

Relational databases
- Lineage/provenance, logical logging, materialized views

GraphLab, Piccolo, BigTable, RAMCloud
- Fine-grained writes similar to distributed shared memory

Iterative MapReduce (e.g. Twister, HaLoop) 
- Implicit data sharing for a fixed computation pattern

Caching systems (e.g. Nectar)
- Store data in files, no explicit control over what is 
cached

÷
(b)

(a) reduce By Ueyccx ,g) ⇒ xty) key -- pan-number

(b) select sum (tax - paid) from df group by pan-number
(pseudocode)

other Tools

•

spark always preferred



Big Data Algorithm Complexity

Q : complexity of matrix multiplication on single node ?
n n n

E E E I = 01ns) complexity depends on no of
in j=i a- i computations

Q : complexity of database query?

hashtable amortised 011)

} in - memory

lost /rbt Oclogn)

complexity depends on disk reads

cost of BD Algorithms

• Algorithms tend to be 01h) (map- reduce)
• Network speed 4 CPU speed
• Disk speed a CPU speed
• Majorly impacted by communication time

communication cost

•

Depends on input size
• Final olp usually smaller by aggregation



Q : complexity of natural join of R
,
S

RCA, B) SCB>C)

Input Input
Filet File 2

r elements s elements

v v

Ocr) Mapper , mapper 2 OCS)

r s

J L

Reducer Ocrts)

✓

prs (p= probability of match)

Output

mapper YP complexity : rts
Reducer YP complexity : rts

Total complexity : Ocr-1s)

Q : complexity of natural join of R
,
S ,T

Case 1 : Input Input
Filet File 2

r elements s elements

✓

Ocr) MapÑerl Mapper 2 OCS)

res

rs : complexity s c Input

of Cartesian prod
Reducer

File 3

prs
t elements

v r

Ocprs) mapper 3 Mapper 4 Oct)

prstt
J

L

Reducer

output
let p= probability of match for Rqs

total cost = Ocrtstttprs)



time ls /bin

case 2 : join S
,
-1 and then R

Let q= prob of join of S
,
T

Total cost : ocrtstttqst)

If pug , join min Crs , st , rt)

wall clock Time

• Time taken for entire job to finish

• Linux :

real : wall clock time

user : time CPU spends executing user code

sys : time CPU spends executing system (OS) Code

Trade-off Parallelism

•

Dividing tasks : reduce wall clock time , increase communication

time

• Reducer size q (not no . of reducers)
- no of unique values with same key

• No of map 01ps T

o

q small , more reducers
- Max reducers 179
- reduce WCT

,
increase CT

•

Replication rate r
-

r -- Cno of kv pairs in mapper olp)/ ( no of input records to mapper)
- ✗ avg CT from M tastes to R tasks



Wall Clock Example - SIMILARITY JOIN BETWEEN IMAGES

• DB of 106 images , I MB each ( ITB DB)

•

similarity function scx ,y) on images x and y such that

scx
,g) = sly ,x)

•

Output all a ,y St scx ,y) > t

Naive Algorithm

- Each image Pi has index i

° Mapper
- reads Ci

, Pi)
- generates all possible pairs ( { i ,j} , {Pi , Pj}) Li =/j)

• Reducer
- reads ( {i ,j} , {Pi , Pj})
- computes scpi , P;)

• Communication cost of naive algorithm?
- 01h27 where n= no . of images (to generate pairs)

• Parallelism of naive algorithm
- potentially very high as reducer size very high 4 each
can be processed in parallel

• Replication rate of naive algorithm?
- OIP of mapper / UP to mapper
- 0cm



Alternate Solution Clow Communication Cost)

• Reducer runs on same node as mapper

• Very low parallelism

summary
- 2 choices

1. One pair to each reducer
•

High communication cost Cbad)
°

High parallelism cgood)

2. Do everything on one node
• Low parallelism lbad)
• Low communication cost cgood)

3. Something in between?

Group- Based Algorithm

•

Group images

Go G , . . . 4g

images

✓ s>

RI R2



Suppose we have groups of 100
How many groups are there?
How many nodes is each group sent to?

What is the 
Communication cost of the algorithm? 
Parallelism of the algorithm?

- No . of groups = g

• No
. of images per group = m=n/g

• Each group sent to g-1 servers

• Total no . Of messages = glg- 1)

• Total data = mgcg-D= ncg- 1) ~ ng = cc

• Parallelism = no . of nodes= (g-1) + (g-2) + (g-3) 1-
. . .

=

gcg-1) = 0cg)
2

•

Or
,
no . of nodes =

"

C2 = gcg-1)
2

Q:

(a)

(b)

Ci )

Iii>

(a) 106 images ,
102 per group

= 104 groups

(b) Each group sent to 104-1 nodes

d) CC =

ng
= 106 images ✗ 10

"

groups = 101°

di) parallelism ~ 40472 = 108


